Orgel Diagram

MSc Chemistry Postgraduate Department of Chemistry St. Mary's College, Manarcaud

- Orgel diagrams are a special class of correlation diagrams developed by Leslie E. Orgel.
- Orgel diagrams are correlation diagrams showing the relative energies of electronic terms in transition metal complexes.
- Orgel diagrams are restricted to only weak field (high spin) cases, and offer no information about strong field (low spin) cases.
- It provide a convenient means of predicting the number of spin allowed absorption bands in a UV/visible spectrum for a complex along with their respective symmetry designations
- Orgel diagrams are qualitative, no energy calculations can be performed from these diagrams.
- Orgel diagrams only show the symmetry states of the highest spin multiplicity instead of all possible terms, unlike a Tanabe-Sugano diagram.

Configuration		Term Ground T	Ground Term	n Excited terms with the same spin multiplicity as ground	
Td	Oh			term	
d ⁹	d1	² D	² T _{2(g)}	² E _{2(g)}	
d ⁸	d ²	³ F	${}^{3}T_{1(g)}(F)$	${}^{3}\mathrm{T}_{2(\mathrm{g})}, {}^{2}\mathrm{A}_{2(\mathrm{g})}, {}^{3}\mathrm{T}_{1(\mathrm{g})}(\mathrm{P})$	
d ⁷	d ³	⁴F	⁴ A _{2(g)}	${}^{4}\mathrm{T}_{2(\mathrm{g})}, {}^{4}\mathrm{T}_{1(\mathrm{g})}(\mathrm{F}), {}^{4}\mathrm{T}_{1(\mathrm{g})}(\mathrm{P})$	
d ⁶	d ⁴	⁵ D	⁵ E _{2(g)}	⁵ T _{2(g)}	
d ⁵	d ⁵	⁶ S	⁶ A _{1(g)}	None	
d ⁴	d ⁶	⁵ D	⁵ T _{2(g)}	⁵ E _{2(g)}	
d ³	d ⁷	⁴ F	⁴ T _{1(g)} (F)	${}^{4}\mathrm{T}_{2(g)}, {}^{4}\mathrm{A}_{2(g)}, {}^{4}\mathrm{T}_{1(g)}(\mathbf{P})$	
d ²	d ⁸	³ F	³ A _{2(g)}	${}^{3}\mathrm{T}_{2(\mathrm{g})},{}^{3}\mathrm{T}_{1(\mathrm{g})}(\mathrm{F}),{}^{3}\mathrm{T}_{1(\mathrm{g})}(\mathrm{P})$	
d ¹	d ⁹	² D	² E _{2(g)}	² T _{2(g)}	

Config	uration	
Td	Oh	
d ⁹	d ¹	
d ⁸	d ²	
d ⁷	d ³	
d ⁶	d ⁴	Inverse relationship is viewed here, because a tetrahedral field is a
d ⁵	d ⁵	negative octahedral field.
d ⁴	d ⁶	
d ³	d ⁷	
d ²	d ⁸	
d ¹	d ⁹	

Configuration		Term
Td	Oh	
d ⁹	d1	² D
d ⁸	d ²	³ F
d ⁷	d ³	${}^{4}\mathbf{F}$
d ⁶	d ⁴	⁵ D
d ⁵	d ⁵	⁶ S
d ⁴	d ⁶	⁵ D
d ³	d ⁷	⁴ F
d ²	d ⁸	³ F
d ¹	d ⁹	² D

Table 18.2 Splitting of Spectroscopic States in a Ligand Field ^a .				
Gaseous Ion spectroscopic state	Components in an octahedral field	Total degeneracy		
S	A _{1g}	1		
Ρ	T_{1g}	3		
D	$E_g + T_{2g}$	5		
F	$A_{2g} + T_{1g} + T_{2g}$	7		
G	$A_{1g} + E_g + T_{1g} + T_{2g}$	9		
Н	$E_g + 2T_{1g} + T_{2g}$	11		
1	$A_{1g} + A_{2g} + E_g + T_{1g} + 2 T_{2g}$	13		
^a Ligand field states have the same multipl	icity as the spectroscopic state from which the	ey arise.		

Configuration		Term	Ground Term
Td	Oh		
d ⁹	d ¹	² D	² T _{2(g)}
d ⁸	d ²	³ F	${}^{3}T_{1(g)}(F)$
d ⁷	d ³	⁴ F	⁴ A _{2(g)}
d ⁶	d ⁴	⁵ D	⁵ E _{2(g)}
d ⁵	d ⁵	⁶ S	⁶ A _{1(g)}
d ⁴	d ⁶	⁵ D	⁵ T _{2(g)}
d ³	d ⁷	⁴ F	${}^{4}T_{1(g)}(F)$
d ²	d ⁸	³ F	³ A _{2(g)}
d ¹	d ⁹	² D	² E _{2(g)}

Hole formalism

A d⁹ system can be considered as the inverted d¹ system as far as energy levels can be considered because d⁹ system has an electron vacancy, which is called a 'hole'. Similarly, d⁸ system is considered as inverted d² system as far as the energy levels are considered. This is called hole formalism. In short, an inverted energy level relationship exists between dⁿ and d¹⁰⁻ⁿ systems. Hence, with the help of only these two diagrams, all the dⁿ energy level diagrams can be explained in terms of d¹ and d² systems as given below:

 $d^9 = d^{10-1} = inverted d^1 system$ $d^8 = d1^{0-2} = inverted d^2 system$

Determination of Ground state

Configuration		Term Ground T	Ground Term	n Excited terms with the same spin multiplicity as ground	
Td	Oh			term	
d ⁹	d1	² D	² T _{2(g)}	² E _{2(g)}	
d ⁸	d ²	³ F	${}^{3}T_{1(g)}(F)$	${}^{3}\mathrm{T}_{2(\mathrm{g})}, {}^{2}\mathrm{A}_{2(\mathrm{g})}, {}^{3}\mathrm{T}_{1(\mathrm{g})}(\mathrm{P})$	
d ⁷	d ³	⁴F	⁴ A _{2(g)}	${}^{4}\mathrm{T}_{2(\mathrm{g})}, {}^{4}\mathrm{T}_{1(\mathrm{g})}(\mathrm{F}), {}^{4}\mathrm{T}_{1(\mathrm{g})}(\mathrm{P})$	
d ⁶	d ⁴	⁵ D	⁵ E _{2(g)}	⁵ T _{2(g)}	
d ⁵	d ⁵	⁶ S	⁶ A _{1(g)}	None	
d ⁴	d ⁶	⁵ D	⁵ T _{2(g)}	⁵ E _{2(g)}	
d ³	d ⁷	⁴ F	⁴ T _{1(g)} (F)	${}^{4}\mathrm{T}_{2(g)}, {}^{4}\mathrm{A}_{2(g)}, {}^{4}\mathrm{T}_{1(g)}(\mathbf{P})$	
d ²	d ⁸	³ F	³ A _{2(g)}	${}^{3}\mathrm{T}_{2(\mathrm{g})},{}^{3}\mathrm{T}_{1(\mathrm{g})}(\mathrm{F}),{}^{3}\mathrm{T}_{1(\mathrm{g})}(\mathrm{P})$	
d ¹	d ⁹	² D	² E _{2(g)}	² T _{2(g)}	

Orgel diagram for d¹, d⁴, d⁶, d⁹ ions in Oh and Td fields

Ligand Field Strength

Orgel diagram for d², d³, d⁷, d⁸ ions in Oh and Td fields

Ligand Field Strength

Special Case of d⁵ ion

- The lowest energy term for the free ion is a ⁶S; this splits in a weak oh field to produce ⁶ A_{1g} ground state.
- This is the only state on the diagram with multiplicity of six.
- This implies that for a d⁵ oh complex, all transitions are not only Laporte forbidden, but also spin- forbidden.
- Transitions which are doubly-forbidden produce extremely weak absorption bands & their extinction coefficients are several hundred times smaller than those for singly forbidden transitions.
- This is evidenced by the colourlessness of dilute solutions of Mn²⁺ species.
- Only at high concentrations Mn²⁺ complexes show a faint pink colour ; it is because of vibronic coupling.

 The lines of T_{1g} (F) and T_{1g} (P) states curve away from each other due to quantum mechanical non crossing rule in the orgel diagram for the d² configuration.

• Thus the terms of same symmetry will never cross and repel each other

Q 1

The spectroscopic ground state symbol and the total number of electronic transitions of $[Ti(H_2O)_2]^{2+}$ are

- a) ${}^{3}T_{1g}$ and 2
- b) ${}^{3}A_{2g}$ and 3
- c) ${}^{3}T_{1g}$ and 3
- d) ${}^{3}A_{2g}$ and 3

one transition

three transitions

three transitions

Exercise: Determine the ground term for d², d⁶, und d⁸ ions in tetrahedral ligand fields!

Solution Ground terms: ${}^{3}F(d^{2})$, ${}^{5}D(d^{6})$, ${}^{3}F(d^{8})$ The splitting pattern in tetrahedral field is inverted to that in an octahedral field, hence Splitting : ${}^{3}F => {}^{3}A_{2} < {}^{3}T_{2} < {}^{3}T_{1}$ ${}^{5}D => {}^{5}E < {}^{5}T_{2}$ ${}^{3}F => {}^{3}T_{1} < {}^{3}T_{2} < {}^{3}A_{2}$ **Exercise**: For octahedral $[Ni(H_2O)_6]^{2+}$ and $[Ni(NH_3)_6]^{2+}$ one observes the following bands (in cm⁻¹): $[Ni(H_2O)_6]^{2+}$: 8700, 14500, 25300, $[Ni(NH_3)_6]^{2+}$: 10700, 17500, 28300

- a) Assign the bands
- b) Calculate 10Dq (or Δ_o).
- c) Comment on the different position of bands for the two complexes.

a) Ni ²⁺ = d^8 , =>		H ₂ O	NH ₃	
Laporte-forbidden, spin-allowed bands:	$ \begin{array}{c} {}^{3}\text{A}_{2g} \rightarrow {}^{3}\text{T}_{2g}, \\ {}^{3}\text{A}_{2g} \rightarrow {}^{3}\text{T}_{1g} (\text{F}), \\ {}^{3}\text{A}_{2g} \rightarrow {}^{3}\text{T}_{1g} (\text{P}), \end{array} $	8700 cm ⁻¹ 14500 cm ⁻¹ 25300 cm ⁻¹	10700 cn 17500 cr 28300 cr	n-1 n-1 m-1
b) Δ_{o} refers to the energy $\Delta_{o} = 10 D_{q} = 8700 c$ $\Delta_{o} = 10 D_{q} = 10700$	y of the ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$ cm ⁻¹ , D_q = 870 cm cm ⁻¹ , D_q = 1070 c	₂ _g - transitions ^{−1} (aqua comple) cm ^{−1} (ammin con	() nplex)	Ni ²⁺ ³ F
c) NH₃ has a stronger liga	and field than H ₂ C).		³ P ³ T ₁
				³ T ₁

Assignment

a) What is the ground term for $[Co(NH_3)_4]^{2+}$? b) How many electronic absorption bands are expected? Assign them? c) If the band with the lowest energy appears at 7500 cm⁻¹, how large is Δt ? d) Co²⁺ also forms an octahedral complex $[Co(NH_3)_6]^{2+}$. Identify its ground term. How large is Δ_0 ? The electronic spectra of an aqueous solution of $[Ni(en)_3]$ 2+ exhibits broad absorptions with λ max= 325, 550 and 990 nm.